Некоторые общие особенности
процесса трансляцииСтраница 2
г. Взаимодействие кодона и антикодона
Большинство молекул тРНК спаривается более чем с одним кодоном. Поскольку кодоны транслируются при участии антикодонов разных тРНК, можно было бы ожидать, что для каждого из 61 кодона, детерминирующего аминокислоты, имеется своя тРНК. Однако не существует ни разных тРНК для каждого из четырех валиновых или глициновых кодонов, ни разных тРНК для обоих тирозиновых или обоих лизиновых кодонов. Действительно, эксперименты in vitro и in vivo показали, что некоторые тРНК могут транслировать более чем один кодон. Так, кодоны UAU и UAC транслирует единственная тРНКТуг. Поскольку антикодон этой тРНКТуг имеет последовательность 5'-GUA-3', он может образовать комплементарные пары с первыми двумя основаниями любого из этих кодонов. Соответственно G способен спариваться как с U, так и с С, находящимися в третьем положении кодонов; аналогичным образом U, находясь на 5'-конце какого-либо антикодона, может спариться и с А, и с G, находящимися на 3'-конце соответствующих кодонов. На самом деле трансляция всех пар кодонов, у которых в третьей позиции стоит U или С, может осуществляться одной и той же тРНК, у которой первым основанием в антикодоне оказывается G или какое-то модифицированное основание. По-видимому, при спаривании кодонов и антикодонов в А- и Р-участках включаются какие-то стабилизирующие взаимодействия, отличные от тех, которые имеют место при обычном комплементарном спаривании оснований.
Анализ генетического кода показывает, однако, что существуют специфические взаимодействия, позволяющие различать кодоны, у которых в третьей позиции стоит А или G. Например, тРНК, расшифровывающая кодон AUG как метионин, должна отличать этот триплет от кодона AUA, обозначающего изолейцин, а тРНК'1*11' должна отличать триптофановый кодон UGG от терминирующего кодона UGA. Специфичность обеих этих операций декодирования определяется спариванием С антикодона с G, находящимся в третьем положении кодона.
Модификация оснований в антикодонах может еще сильнее ограничить диапазон возможных взаимодействий кодон-антикодон. Например, гипоксантин, занимая место аденина в той позиции антикодона, по которой происходит спаривание с третьим основанием кодона, может обусловить спаривание такого антикодона с кодонами, у которых в последней позиции стоят основания U, С или А. Разнообразие модификаций оснований в антикодо-нах или–что встречается наиболее часто – оснований, соседствующих с антикодоном, изменяет специфичность взаимодействия аминоацил-тРНК–кодон. Таким способом обычно предотвращаются ошибки при считывании третьего основания кодонов и обеспечивается надежность процесса декодирования.
Правила спаривания оснований, согласно которым молекулы тРНК одного типа могут узнавать несколько разных кодонов, называются правилами неоднозначного соответствия. Следует отметить, однако, что термин «качание», используемый для описания некоторой свободы спаривания третьего основания кодона, просто как бы затушевывает тот факт, что мы до конца не знаем, какие именно химические и структурные особенности обусловливают кодон-антикодоновые взаимодействия в Р-и А-участках рибосомы.
Мутации в кодонах и антикодонах. Мутации, затрагивающие различные компоненты трансляционного аппарата, могут изменить результат считывания кодирующей последовательности. Наиболее драматичные последствия вызывают те мутации в гене, кодирующем белок, которые превращают кодон, отвечающий какой-то аминокислоте, в терминирующий кодон и тем самым приводят к преждевременному завершению синтеза из-за досрочной терминации трансляции в мутировавшем сайте. Примером может служить превращение лизинового кодона ААА в UAA и глутаминового кодона CAG в UAG. Аналогично любая мутация, в результате которой происходит замена аминокислотного кодона на кодон UGA, тоже вызовет преждевременную остановку синтеза полипептидной цепи. Однако, если в результате второй мутации произойдет изменение соответствующего основания в антикодоне тРНК, терминация может быть предотвращена, или супрессирована, и образуется полноразмерный, хотя и измененный, белок. Например, если тРНК, тРНК или тРНК изменятся подобным образом, то они смогут прочитать кодон UAG как аминокислотный. С помощью различных механизмов может произойти ошибочная трансляция и таких мутантных кодонов, как UAA и UGA. Мутации в тРНК-генах, затрагивающие основания, отличные от тех, которые составляют антикодон, могут привести к изменению специфичности или стабильности взаимодействий кодона и антикодона. Благодаря таким механизмам может быть предотвращена преждевременная терминация синтеза полипептида, если терминирующий кодон будет прочитан как смысловой. Подобная супрессия терминации, как правило, не очень эффективна, поэтому наряду с полноразмерными образуются и укороченные, преждевременно терминированные полипептидные цепи. Благодаря относительной неэффективности такой трансляционной супрессии не приносит большого вреда и случайное проскакивание терминирующих кодонов, находящихся на естественных концах кодирующих мРНК.
Похожие материалы:
Выводы
Клетки эукариот содержат много мембранных органелл и множество различных внутриклеточных мембран, каждая из которых обладает уникальным белковым составом. Любой мембранный белок, информация о синтезе которого заключена в ядре, должен безо ...
Нейроглия (Neuroglia)
Кроме нервных клеток, в состав нервной ткани входят многочисленные и весьма различные по функциональному значению клеточные элементы - нейроглия (греч. glia - клей). Они выполняют в нервной ткани опорную, разграничительную, трофическую, с ...
Семь советов Кролика орхидееводам
Это советы по выращиванию эпифитных орхидей. Бывают ещё орхидеи terrestrial (ground), то есть растущие в земле (но о них речь пойдет отдельно).
1. Покупка
Покупайте орхидеи только в достойном месте: желательно не в большом магазине, а в ...