Генетический кодСтраница 3
В экспериментах по расшифровке кода, описанных выше, синтетические полинуклеотиды транслировались в условиях, не требующих точной инициации. Однако in vivo и в соответствующих условиях in vitro инициация происходит только с правильной рамкой считывания. Однозначность прочтения белок-кодирующей последовательности обеспечивается тем, что трансляция мРНК начинается только со специфического триплета – AUG, и далее расшифровывается каждый последующий триплет в направлении от 5'-конца молекулы мРНК к 3'-концу. Позднее был разработан метод быстрого секвенирования нуклеиновых кислот и белков, который позволил проверить систему кодирования непосредственно, путем сравнения последовательностей ДНК, РНК и кодируемых ими белков. Сравнительные исследования подтвердили также и то, что кодирующие последовательности действительно читаются от 5'- к 3'-концу мРНК.
г. Избыточность генетического кода
Удивительной особенностью кода оказалось то, что все аминокислоты, кроме двух, кодируются более чем одним кодоном. Эти две составляющие исключение аминокислоты, метионин и триптофан, встречаются в белках достаточно редко. Наибольшее число кодонов имеют серин и лейцин, которыми белки изобилуют. Такие достаточно часто встречающиеся аминокислоты, как цистеин, аланин, глицин, валин, а также дикарбоновые кислоты и их амиды, кодируются двумя-четырьмя кодонами каждая. Из-за такой избыточности разные нуклеотидные последовательности могут при трансляции давать одну и ту же аминокислотную последовательность. Итак, если мы знаем нуклеотидную последовательность, то можем однозначно определить последовательность белка, обратное же проделать невозможно.
Сигналом для остановки синтеза белка служит любой из трех кодонов: UAA, UAG или UGA. Кодон AUG выполняет двойную функцию: он детерминирует аминокислоту метионин и в определенных последовательностях обозначает начало сегмента, кодирующего белок.
Избыточность кода имеет одну интересную особенность: наибольшее число вариаций в кодонах, детерминирующих данную аминокислоту, приходится на третью позицию. Например, аминокислоты глицин, валин, пролин, аланин и треонин кодируются четырьмя кодонами каждая, и в каждом случае эти четыре кодона различаются только нуклеотидами в третьей позиции. Если какая-то аминокислота кодируется двумя кодонами, то последние различаются только пуринами или пиримидинами, находящимися в третьей позиции. И только кодоны для лейцина, серина и аргинина различаются нуклеотидами, находящимися в первой, второй или обеих позициях. Поэтому мутации, приводящие к заменам нуклеотидов в третьей позиции, часто не сопровождаются изменением аминокислотной последовательности. Кроме того, код устроен так, что при замене нуклеотидов даже в первой или второй позиции некоторых кодонов в полипептид включается структурно родственная аминокислота, сводя тем самым к минимуму нарушения во вторичной структуре белка. Кодоны для гидрофобных аминокислот, например фенилаланина, лейцина, изолейцина и валина, различаются только одним нуклеотидом. Аналогичная ситуация наблюдается и для кодонов серина и треонина или аланина и глицина.
д. Универсальность генетического кода
По-видимому, все прокариоты, а также большинство эукариот пользуются одним и тем же словарем кодонов независимо от того, представлен ли их геном ДНК или РНК. В этом смысле нередко говорят, что код универсален. Тем не менее частота использования кодонов-синонимов варьирует как на уровне организмов, так и на уровне мРНК. Если действительно какие-то кодоны используются в большинстве кодирующих белки последовательностей чаще, чем другие, то это должно найти отражение в относительном содержании в клетке различных тРНК, расшифровывающих кодоны-синонимы. Так, если кодон AGA встречается в мРНК какого-либо организма сравнительно редко, то и содержание тРНК, расшифровывающей AGA, должно быть невелико. В некоторых случаях выбор кодонов для конкретной кодирующей последовательности определяется задачами, не связанными с их трансляцией. Например, определенное взаимное расположение кодонов может благоприятствовать образованию специфической вторичной структуры мРНК; таким образом, присутствие конкретных кодонов может влиять на готовность мРНК к трансляции и тем самым играть регуляторную роль. В некоторых случаях экспериментальная замена существующих кодонов их синонимами приводит к изменению стабильности мРНК при полном сохранении ее способности к правильной трансляции.
Похожие материалы:
Филогенез артериальных жаберных дуг
В связи с тем что основные артериальные сосуды у млекопитающих и человека формируются на базе закладок жаберных артерий, проследим их эволюцию в филогенетическом ряду позвоночных. В эмбриогенезе абсолютного большинства позвоночных заклады ...
Круговорот воды
Вода — основной элемент, необходимый для жизни. В количественном отношении это наиболее распространенная неорганическая составляющая живой материи.
В океанах сосредоточено 97 % общей массы воды биосферы. Предполагают, что суммарное испар ...
Виды химических связей и их объяснение с точки зрения строения атомов
Свойства вещества определяются его химическим составом, порядком соединения в молекулу атомов и их взаимным влиянием. Теория строения атомов объясняет механизм образования молекул и природу химической связи. Важнейшими видами химической с ...